Call Us

Call us Today
(888) 846-4937

Scientists enhance energy storage capacity of graphene supercapacitors via solar heating

Written by: Leonard Parker | solar news | January 30, 2022


Prof. WANG Zhenyang's research group from the Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences (CAS) has enhanced the energy storage capacity of graphene supercapacitors via solar heating. Related research results were published in the Journal of Materials Chemistry A.

In low temperature environments, the hindered diffusion of electrolyte ions seriously restricts the electrochemical performance of supercapacitors. Electrode materials with solar-thermal properties are expected to provide a new strategy to solve this problem. However, it remains a challenge to develop electrode materials with both excellent solar-thermal properties and high energy storage capacity.

In this research, the researchers prepared graphene films with three-dimensional porous structures using laser-induction technology. They composited the polypyrrole uniformly composited into the graphene network by pulse electrodeposition. Graphene/polypyrrole composite electrodes were obtained and a new type of solar-thermally enhanced supercapacitor was thus constructed.

This supercapacitor has many advantages. When the temperature dropped to -30 centigrade, the electrochemical performance of the supercapacitor, which is normally severely degraded, could be enhanced rapidly to room temperature under solar irradiation at light intensities of 1.0 kW m-2. Meanwhile, at room temperature (15 C), the surface temperature of the devices increased by 45 C under solar irradiation at light intensities of 1.0 kW m-2.

"After the temperature of electrodes was raised, the optimized pore structure and the increased electrolyte ion diffusion rate increased the energy storage capacity by 4.8 times. In addition, since the solid electrolyte was well protected, the capacitance retention rate of the supercapacitor was still as high as 85.8% after 10,000 times of charging and discharging," said Dr. LI Nian, a member of the team.

This work provided new solutions for solving the low temperature problem of supercapacitors and developing high energy density devices and was supported by the National Key R and D Project of China, the National Natural Science Foundation of China, the Anhui Provincial Science and Technology Major Project, and the Anhui Provincial Key R and D Program.

Research Report: "Enhancing the energy storage capacity of graphene supercapacitors via solar heating"


Related Links
Hefei Institutes of Physical Science, Chinese Academy of Sciences
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly paypal only



New technique boosts efficiency, sustainability of large-scale perovskite solar cells
Raleigh NC (SPX) Jan 26, 2022
An international team of researchers has demonstrated a technique for producing perovskite photovoltaic materials on an industrial scale, which will reduce the cost and improve the performance of mass-produced perovskite solar cells. The technique is low-cost, simple, energy-efficient, and should pave the way for creating perovskite solar cells. Perovskite is of interest for solar cells because it absorbs light very efficiently. This allows for the creation of lightweight, flexible solar cells tha ... read more



Source: https://www.solardaily.com/reports/Scientists_enhance_energy_storage_capacity_of_graphene_supercapacitors_via_solar_heating_999.html