Call Us

Call us Today
(888) 846-4937

New nanocomposite improves solar evaporation for water purification

Written by: Leonard Parker | Solar News | 11th November


Global drinking water scarcity is a severe problem for humans. Water purification consumes a large amount of fossil energy and generates secondary pollution.

Solar-thermal interfacial evaporation has been considered the most promising strategy for addressing this problem. However, developing an optimized material featuring both efficient solar-vapor conversion and good environmental tolerance still remains challenging.

Researchers from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences have developed an ultra-stable amorphous Ta2O5/C nanocomposite with a hollow multishelled structure (HoMS) for solar evaporation, which can improve the efficiency of water purification.

"The precise atomic and composition control in the building block of HoMS realizes an indirect bandgap structure with abundant energy states around the Fermi level, which enhances nonradiative relaxation to facilitate photothermal conversion," said Prof. WANG Dan, the corresponding author of the study. "The unique hollow multishelled structure can efficiently enhance light absorption like a blackbody."

HoMS decreases the energy required for water evaporation. Simulation results show that HoMS establishes a thermal field gradient, thus providing the driving force for vapor evaporation.

"HoMS also benefits water transport," said WANG. "The confined cavities in HoMS promote liquid water diffusion owing to the capillary pumping effect, and the nanopores in HoMS induce water molecules to evaporate in the form of clusters, thus enabling evaporation with less enthalpy."

With highly efficient photoabsorption and photothermal conversion, a super-fast evaporation speed of 4.02 kg m-2 h-1 has been achieved. The evaporation speed barely changed after 30 days, and with no salt accumulation, indicating a long-term stability.

Notably, the concentration of pseudovirus SC2-P could be decreased by six orders of magnitude after evaporation.

This amorphous Ta2O5/C composite is readily fabricated, carried, stored, and recycled. It can be applied to the purification of seawater, or to heavy metal- or bacteria-containing water, obtaining drinkable water that meets the standard of the World Health Organization.

The scientists from IPE are preparing a prototype of seawater desalination for the residents on isolated islands.

The study was published in Advanced Materials on Oct. 29.

Research Report: "Highly Efficient Photothermal Conversion and Water Transport During Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites"


Related Links
Chinese Academy of Sciences
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly paypal only



Synergistic effect of solvent and solid additives on morphology optimization of organic solar cells
Suzhou, China (SPX) Nov 08, 2021
Controlling the morphology of photoactive layers towards nanoscale bi-continuous donor/acceptor interpenetrating networks is a key issue to build high-performance organic solar cells (OSCs). Due to the distinct properties between donor and acceptor materials, casting an active layer from a single solvent solution usually results in an either insufficient or excessive phase separation that reduces the device performance. In comparison to the fullerene acceptors with closed-cage structures, no ... read more



Source: https://www.solardaily.com/reports/New_nanocomposite_improves_solar_evaporation_for_water_purification_999.html